连续必可积,(可积不一定连续)对吗

连续必可积,(可积不一定连续)对吗,第1张

对的。

可积意味着可以进行积分运算,积分是计算覆盖面积的运算,自然允许可去间断点及跳跃间断点的存在,而连续不允许,因此连续必可积,可积未必连续。

因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。

对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。这种现象在函数关系上的反映,就是函数的连续性。

扩展资料:

这就是说,如果自变量在某一点处的增量趋于0时,对应函数值的增量也趋于0,就把f(x)称作是在该点处连续的。

注意:在函数极限的定义中曾经强调过,当x→x0时f(x)有没有极限,与f(x)在点x0处是否有定义并无关系。但由于现在函数在x0处连续,则表示f(x0)必定存在,显然当Δx=0(即x=x0)时Δy=0<ε。于是上述推导过程中可以取消0<|Δx|这个条件。

参考资料来源:百度百科--连续函数

参考资料来源:百度百科--可积函数

设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。(这是定理所以连续一定可积)

设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

(有间断点函数就不连续了,但仍可积)根据定理连续函数一定可积而可积不一定连续。

可积

意味着可以进行积分运算,积分是计算覆盖面积的运算,自然允许可去间断点及跳跃间断点的存在,而连续不允许,因此连续必可积,可积未必连续。因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5824054.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-03
下一篇 2023-02-03

发表评论

登录后才能评论

评论列表(0条)

保存